Bansilal Ramnath Agarwal Charitable Trust's
Vishwakarma Institute of Technology

(An Autonomous Institute affiliated to Savitribai Phule University)

DEPARTMENT OF INFORMATION TECHNOLOGY
DECEMBER 2025 | IT BULLETIN

PROMPT
ENGINEERING

Static Prompts
Modes & ChatML

Contextual Prompts

Prompt Decomposition

Prompt
Engineering

Prompt Templates

Prompt Pipelines

Agents

Vishwakarma Institute of Technology, Pune
Welcome to the December 2025 Edition
of the [T Bulletin on Prompt Engineering

This edition explores what prompt engineering truly is, how Al
interprets and responds to prompts, and why the same prompt
can produce different outcomes. We examine the structure of
effective prompts, core prompting techniques, and the
psychological principles that influence Al behavior. The bulletin
also highlights common prompting mistakes, real-world
applications across domains, and the evolving future of prompt
engineering as a critical skill in the age of generative Al.

What Prompt Engineering Really Is ?

Prompt Engineering

Crafting Clear Instructions for Al —

Clear Prompt

@ Specific Details
® Desired Format

® Context & Goals

w [Al System

User r N
Input Prompt Al Response

f
BB

Effective Query

=1 =L.]

| High-Quality Output

Prompt

: : engineering is
Prompt engineering is best understood as the practice of framing about clarity,
instructions clearly so that a system responds in a predictable and not clever
useful way. It is less about clever wording and more about clarity of

thought. Anyone who has written a lab problem statement or guided phrasing
a group project has already practiced a form of prompt engineering

whether they realized it or not.
kt resembles

When instructions are vague, outcomes tend to drift. In a student writing good

project, unclear task definitions often lead to mismatched

expectations and rework. The same principle applies when problem

Lnteracting with Al systrclemf. Tl?e model cljoes r\ﬂc\ infer intent medwrz]ay a statements or
uman teammate might. It relies entirely on what is written and how cre o

itis structured. spec1f1catlons

Prompt engineering therefore becomes a small but meaningful

discipline of input design. The goal is to reduce ambiguity and make Clear prompts

expectations explicit. A prompt such as “Explain sorting” leaves reduce

many open paths. Is the expectation a theoretical explanation, code confusion and

examples, or a comparison of algorithms? Adding even a little

structure like specifying the academic level or expected format rework
brings the response closer to what is actually needed.

For students and faculty, this matters in everyday academic use. Al
tools are now part of coding practice, report drafting, literature
exploration, and idea clarification.

Clear prompts help these tools behave more like reliable assistants
rather than unpredictable black boxes. Seen this way, prompt
engineering is not an advanced Al skill reserved for specialists. It is a
habit of clear communication. Like writing better questions in an
exam or clearer instructions in a lab manual, it improves outcomes
without changing the underlying system.

How Al Interprets a Prompt

TEXT INPUT CONTEXT WINDOW TEXT GENERATION

3 :
Possible Next Tokens

' brief

""'.,a.. T how 'I} works? 7
- e : S
4n ‘ - »

When an Al system receives a prompt, it does not interpret meaning or
intent in the human sense. Instead, it transforms the input into a
structured sequence of computational signals. One useful way to
understand this process is to view it as both a technical pipeline and a
guided traversal through learned pattemns.

The process begins with tokenization. The prompt is broken into
tokens, which may represent full words, sub-words, or fragments.
These tokens are the model’s basic units of processing. From the
system’s perspective, language is not read as ideas but as sequences.
Small phrasing changes alter token boundaries and order, subtly
reshaping how the prompt is represented internally. This is why
instructions that appear equivalent to humans may trigger different
responses from the model.

Once tokenized, the prompt enters the model’s context window. This
is a fixed-capacity working space where all tokens compete for
influence. The model does not identify “important” instructions
explicitly; instead, attention is distributed across tokens based on
learned statistical relationships. Clear structure, ordering, and
separation help certain signals stand out, while long or cluttered
prompts flatten distinctions. In practical terms, the model follows
structure more reliably than intention.

From this contextual representation, the system moves into
autoregressive generation. The output is produced one token at a time
by estimating the probability of the next token given the existing
context. There is no internal plan or end goal. Each generated token
slightly reshapes the context for the next step, creating a forward-
moving path through a probability space. The model is not validating
facts or reasoning symbolically; it is selecting what is most likely to
come next based on prior pattems.

Al operates on
tokens and
probability, not
semantic
understanding

Small wording
changes reshape
internal
representations

Context windows
limit and
distribute
attentionacross
instructions

Output is
generated step
by step, guided
by likelihood
rather than intent

Why the Same Prompt Gives
Different Outputs

Why Do Al Models

Give Different
Answers to the
Same Question?

Large Language Models (LLMs) often give different answers to the same
prompt because they do not work like a textbook or a search engine that
stores one fixed reply. Instead, they generate responses dynamically, one
word at a time, by predicting what word is most likely to come next based on
patterns learned from massive amounts of data. For every word, the model
considers thousands of possible options, assigns each a probability, and
then samples from these options rather than always choosing the single
most likely word. This process introduces controlled randomness, which is
mainly governed by a setting called temperature. For example, if you ask the
Al to “name a fruit,” it might say apple the first time, banana the next time,
and orange later all correct answers, just different choices from the same
pool. When the temperature is high, the Al behaves more creatively and
explores a wider range of possibilities, which is useful for tasks like story
writing, brainstorming ideas, or creative explanations. When the
temperature is low, the Al becomes more cautious and predictable, which is
better for tasks like writing code, solving math problems, or generating
structured notes.

To understand this further, imagine rolling a slightly weighted dice. Some
numbers are more likely to appear than others, but the outcome is never
guaranteed to be the same each time you roll it. Similarly, LLMs use
probability-based sampling methods such as top-k or top-p, which limit the
choices to the most reasonable words while still allowing variation. Even a
tiny difference in an early word choice such as starting a sentence with “In
simple terms” versus “Basically "can change the tone, length, and structure
of the entire response that follows. These small variations accumulate as
the text grows, which is why two answers to the same prompt can look
noticeably different even though they convey the same idea.

More consistent outputs usually appear when the task is short, highly
constrained (like “yes or no”), or when special settings such as a fixed
random seed are used. Overall, this variability is not a bug but a feature that
makes Al responses feel more natural, flexible, and human-like. At the same
time, because the model is making probabilistic choices and can
occasionally make mistakes, especially in technical or critical situations, it
is always wise to review and double-check its responses rather than treating
them as absolute truth.

Al generates

answers word by
word, not as a ful
sentence at once

. It chooses from
many possible
next words, not

just one fixed
option.

- Temperature
controls
randomness:
low =consistent,
high = creative

What are core prompting techniques?

CORE PROMPTING TECHNIQUES

Core prompting techniques are strategies used to
communicate with large language models effectively so that
they produce accurate, relevant, and reliable outputs. One of
the most fundamental techniques is clear and specific
prompting, where the user precisely states the task, scope, and
expectations instead of using vague instructions. Another
important technique is context setting, which involves providing
background information, constraints, or the role the model
should assume, such as asking it to act as a teacher,
interviewer, or software engineer. Instruction-based prompting
helps by explicitly telling the model what t do and how to do it,
for example by requesting step-by-step explanations or a
particular output format.

Example-based prompting (few-shot prompting) further
improves results by showing the model one or more examples
of the desired input-output pattern, which guides it toward
consistent responses.

Constraint-driven prompting limits the response space by
specifying length, tone, format, or rules, reducing ambiguity
and randomness. Finally, iterative prompting allows refinement
through follow-up instructions, corrections, or clarifications,
enabling the user to progressively steer the model toward the
desired outcome. Together, these core prompting techniques
help users reduce errors, improve consistency, and fully
leverage the capabilities of Al systems.

« Asmall change
in wording can
completely
change the Al’s
answer.

« Saying “explain
like ’'m 10” often
works better than
asking for a
“simple
explanation.”

« Giving one good
example can be
more powerful
than writing a
long instruction.

Prompt Engineering as Applied
Psychology

Prompt engineering can be understood as a form of applied
psychology because t focuses on guiding the behavior of an Al
system through carefully designed instructions, much like
influencing human thinking through communication. Just as
people respond differently based on tone, darity, context, and
expectations, Al models also change their responses
dependingon how a prompt is framed.

When users assign roles such as “act as a teacher” or “act as
an interviewer,” they are leveraging role-based cues similar to
how humans adopt mindsets in social situations. Providing
examples works like learning by demonstration, a well-known
psychological principle, while adding constraints and structure
reduces cognitive ambiguity, leading to more focused
responses.

Step-by-step prompts mirror guided reasoning techniques
used in education to improve problem-solving. Even the use of
polite language, emphasis, or simplification affects outcomes,
reflecting how communication style shapes behavior. In this
way, prompt engineering is less about technical commands
and more about understanding how instructions, context, and
expectations influence an intelligent system’s behavior, making
it closely aligned with principles of applied psychology.

« Prompting works
like giving
instructionsto a
human, not
programming a
machine.

« Role-based
prompts mimic
social roles
humans naturally
follow.

« Examplesin
prompts act like
learning by
observation.

Some Common Prompting Mistakes

@ 5 Common Al Prompting Mistakes

- =

<2 Ambiguousinstructions [_:] Notunderstanding
X [y . Al's shortcomings
Overly complex
instructions o Including confidential

Z@ details
@> Lack of perspective

Common prompting mistakes often arise from
misunderstanding how Al models interpret and generate
responses, and these mistakes can significantly reduce the
quality and usefulness of the output. One of the most frequent
errors is using vague or poorly defined prompts, where the user
does not clearly specify what is required, the level of detail
expected, or the intended audience.

This leaves too much room for interpretation and often results
in generic or unfocused answers. Another common mistake is
combining multiple unrelated tasks into a single prompt, which
can overwhelm the model and lead to incomplete or uneven
responses. Many users also neglect to provide sufficient
context or background information, such as the purpose of the
response, academic level, or real-world constraints, causing
the output to miss the mark. Failing to set clear constraints like
format, length, tone, or structure can produce answers that are
either too long, too short, or inconsistent. At the same time,
overloading the prompt with excessive or conflicting
instructions can confuse the model and reduce clarity instead
of improving it. Another critical mistake is assuming the Al is
always correct and not verifying the output, especially in
technical, medical, legal, or academic contexts where accuracy
is essential. Finally, many users stop after the first response
instead of using iterative prompting to refine, clarify, or correct
the output. Avoiding these common mistakes and treating
prompting as a guided interaction rather than a one-time
command leads to more precise, reliable, and effective Al-
generated responses.

« Vague
prompts lead
to vague
answers.

« Al cannot
guess your
intent without
clear context.

o Asking too
many things at
once reduces
answer quality

The Future of Prompt Engineering

THE FUTURE OF

PROMPT ENGINEERING 3ES:

4)‘&\::

Domam -Specific Prompts
'y R

y Mrmzmg Prompts z'(,

B ¥
. -

l"_ —‘/'; A .'
- B |

Core Digital Sklll lomo;row

2 ’
- -

>
i
I

: Human-Al Collaboration

“\ *W’ 1 \%e

Multnmodal Promptmg
ext + Images + Code
@

+ Reusable Prompt
Ftameworks

Smart Guidance, - -'7': . = ~2 = Effective Communication with Al —
Better Results e e e S

The future of prompt engineering is expected to move from
simple question-asking toward a more strategic and skill-based
interaction between humans and Al systems. As Al models
become more powerful and widely used across education,
healthcare, business, and software development, the ability to
craft effective prompts will increasingly be seen as a core digital
skill. Prompt engineering will evolve to include reusable prompt
frameworks, domain-specific prompting styles, and automated
tools that help optimize prompts for accuracy, safety, and
consistency.

Multimodal prompting combining text with images, code, and
data will become more common, requiring users to think more
holistically about how instructions are framed. A the same time,
improved Al interfaces may reduce the need for highly complex
prompts by guiding users interactively, but understanding
prompting principles will remain essential for advanced tasks
and critical applications. Overall, prompt engineering will shift
from an experimental technique to a structured discipline,
playing a key role in making human-Al collaboration more
efficient, reliable, and impactful.

« Prompt engineering
will become a core
digital skill, like
coding or data
analysis.

« Future tools will

help auto-optimize
prompts for better
accuracy.

« Domain-specific
prompts will be
commonin fields
like medicine, law,
and education

References

 Artificial Intelligence: A Modern Approach -
Stuart Russell & Peter Norvig
Provides foundational understandingof Al
systems and reasoning, useful for grounding
prompt engineering concepts.

» Deep Learning - lan Goodfellow, Yoshua
Bengio, Aaron Courville
Explains neural networks and probabilistic
modeling that underpin language models.

» Anthropic Prompting Guides
Includes principles like constitutional Al and
structured prompting strategies.

» Google Al Blog (Gemini/ PaLMmodels)
Discusses prompt tuning, instruction-following,
and multimodal prompting.

» arXiv Research Papers on Prompt Engineering
Contains influential papers on few-shot
prompting, chain-of-thought prompting, and
instruction tuning.

» Stanford University - Stanford Al Lab (SAIL)
Research on human-Al interaction, language
models, and prompt-based learning.

» Coursera - Prompt Engineering G Generative
Al Courses
Structured beginner-to-advanced courses with
practical examples.

* DeeplLearning.Al
Popular short courses on prompt engineering
and LLM application design.

Student Editors

Avantika Chatterjee Kushal Chunduru
IT-A

Nidhish Chincholkar ~ S'ddhika Tathe
IT- A IT-F

