

“What is a stack?

linear data structure

[t is an ordered group of homogeneous items
of elements.

Elements are added to and removed from the
top of the stack

Stack principle: LAST IN FIRST OUT(LIFO)

It means the last element inserted is the first
one to be removed

Ex- stack of plates

Last In First Out

4 | top
3 B tOp 3 3 l— tOp
2 [« top > 5 2

“Applications of stack

Balancing of symbols

Infix to Postfix /Prefix conversion
Redo-undo features at many places like in editors.
Forward and backward feature in web browsers

Used in many algorithms like Tower of
Hanoi, tree traversals, topological graph sorting
etc.

Other applications can be Backtracking, N queen
problem etc.

Operations on stack

* isEmpty
* Push

* Pop

¢ isFull

Below is the complete algorithm
Let arr[o..n-1] be the input array and element to be searched be x.

Find the smallest Fibonacci Number greater than or equal to n. Let this
number be fibM [m’th Fibonacci Number]. Let the two Fibonacci numbers
preceding it be fibMmi [(m-1)th Fibonacci Number] and fibMm2 [(m-2)’th
Fibonacci Number].

While the array has elements to be inspected:
e Compare x with the last element of the range covered by fibMm2

e If x matches, return index

e Else If x is less than the element, move the three Fibonacci variables two Fibonacci
down, indicating elimination of approximately rear two-third of the remaining array.

* Else x is greater than the element, move the three Fibonacci variables one Fibonacci
down. Reset offset to index. Together these indicate elimination of approximately
front one-third of the remaining array.

Since there might be a single element remaining for comparison, check if
fibMmu is 1. If Yes, compare x with that remaining element. If match, return
index.

e

i=min(offset+mz2,n)

Offset-It marks the range that has been eliminated,

fibMmz | fibMmr | AbM | offset | i=min(offset+fibL | arr/i] Consequence e
n)
S 8 13 0 3 45 Move one down, reset offset
3 S 8 3 8 82 Move one down, reset offset
2 3 3 8 10 90 Move two down
I I 2 8 9 85 Return i

isEm Returns true(1) if stackis empty,
elseﬁgﬁbe_(o) .

int isEmpty()
{
if (top==-1)
return i,
else
return o;
}

#define MAX_ STACK SIZE 100
int top= -1

int stack[MAX_STACK_ SIZE]

isFull - Returns true(1) if stackis Full,

~ else false(o).

int isFull()
{
if (top==(MAX_STACK_SIZE -1))
return i,
else
return o;

—

Push- Add item in stack

void push(int num)

{
if(isFull())
printf(“\n Stack is Full”);

top=top +1,
stack[top] = num;

J

e AL L

> o
Pop- Remove item from stack

int pop()
{

Int num;

if(isEmpty())
printf(“\n Stack is empty”);

num=stack[top];
top--;
return num,

J

/
Stack using Linked list

Extend stack size dynamically
isFull() - condition not applicable

isEmpty()- head node not available

void push(struct Node** head, int data)

{

struct Node* node = (struct
Node*)malloc(sizeof (struct Node));

node->data =data;
node->next = *head;
*head = node; //top

J

head Push(..,3) head

2| A 1| AnNuLL s A 2| A 1| AN

// e

void pop(struct Node** head)

{
if (isEmpty(*head))
printf(“ Stack is Empty”);

struct Node™* temp = *head;
*head = (*head)->next;
int num = temp->data;

free(temp);
printf(“ Popped element: %d”, num);
haad | head
J pop \l

3| AN 2[AN 1| ANl 2 A= 1|~ =NULL

