
- Shital Dongre

- Assistant Professor

- VIT, Pune.

What is a stack?
 linear data structure

 It is an ordered group of homogeneous items
of elements.

 Elements are added to and removed from the
top of the stack

 Stack principle: LAST IN FIRST OUT(LIFO)

 It means the last element inserted is the first
one to be removed

 Ex- stack of plates

Last In First Out

2
1

4
3
2
1

3
2
1

3
2
1 top

top
top

top
top

1

Applications of stack

 Balancing of symbols

 Infix to Postfix /Prefix conversion

 Redo-undo features at many places like in editors.

 Forward and backward feature in web browsers

 Used in many algorithms like Tower of
Hanoi, tree traversals, topological graph sorting
etc.

 Other applications can be Backtracking, N queen
problem etc.

Operations on stack
 isEmpty

 Push

 Pop

 isFull

 Below is the complete algorithm
Let arr[0..n-1] be the input array and element to be searched be x.

 Find the smallest Fibonacci Number greater than or equal to n. Let this
number be fibM [m’th Fibonacci Number]. Let the two Fibonacci numbers
preceding it be fibMm1 [(m-1)’th Fibonacci Number] and fibMm2 [(m-2)’th
Fibonacci Number].

 While the array has elements to be inspected:
 Compare x with the last element of the range covered by fibMm2
 If x matches, return index
 Else If x is less than the element, move the three Fibonacci variables two Fibonacci

down, indicating elimination of approximately rear two-third of the remaining array.
 Else x is greater than the element, move the three Fibonacci variables one Fibonacci

down. Reset offset to index. Together these indicate elimination of approximately
front one-third of the remaining array.

 Since there might be a single element remaining for comparison, check if
fibMm1 is 1. If Yes, compare x with that remaining element. If match, return
index.

 i=min(offset+m2,n)

 Offset-It marks the range that has been eliminated,
starting from the front. We will update it time to time.



isEmpty - Returns true(1) if stack is empty,
else false(0).

int isEmpty()
{
 if (top==-1)
 return 1;
 else
 return 0;
}

#define MAX_STACK_SIZE 100

int top= -1

int stack[MAX_STACK_SIZE]

isFull - Returns true(1) if stack is Full,
else false(0).

int isFull()

{

 if (top==(MAX_STACK_SIZE -1))
 return 1;

 else

 return 0;

}

 Push- Add item in stack

void push(int num)

{

 if(isFull())

 printf(“\n Stack is Full”);

 top = top + 1;

 stack[top] = num;

}

 Pop- Remove item from stack

int pop()

{

int num;

 if(isEmpty())

 printf(“\n Stack is empty”);

num=stack[top];

top--;

return num;

}

Stack using Linked list

 Extend stack size dynamically

 isFull() - condition not applicable

 isEmpty()- head node not available

void push(struct Node** head, int data)

{

 struct Node* node = (struct
Node*)malloc(sizeof (struct Node));

 node->data =data;

 node->next = *head;

 *head = node; //top

 }

Push(..,3)

void pop(struct Node** head)

{

 if (isEmpty(*head))

 printf(“ Stack is Empty”);

 struct Node* temp = *head;

 *head = (*head)->next;

 int num = temp->data;

 free(temp);

 printf(“ Popped element: %d”, num);

 }

 pop

