Introduction

By

Shital Dongre
Asst. Prof.

[T Dept,

@ Data

Algo

» Algo- Ways for Data transformation

» Data structure-
- Stores data
- makes algorithm simpler
- easier to maintain & often faster,

Why Data Structure

» Sophisticated data str— simpler the algo
» Simple algo- less expensive, less code

» Logic is simple— modifications are less likely
to introduce errors

» Easier to repair defects, make modifications,
or add enhancements

» Ex— 1. array 2. Stack ex— pile of plates, box of
books 3. Non-Linear data str— Tree— used for
indexing, routing table

ey

Svllabus

Section 1: Arrays , Stack , Queue, Linked List

F

Single and Multidimensional arrays, Time & Space Complexity
Analysis.

Sorting Techniques Insertion, Bucket, Merge, Quick and heap
sort.

Search technigues Binary search, Fibonacci search.

Linked Lists. Dynamic memory allocation, Singly Linked Lists,
Doubly linked Lists, Circular liked lists, and Generalized linked
lists, Applications of Linked list.

Stack: stack TEPI’E'EEI'IE*{atiDI'IE using array and Linked list.
Applications of stack: Recursion, Validity of parentheses,

Expression conversions and evaluations, mazing problent.

Queue: representation using array and Linked list, Types of
queue, Applications of Queue: Job Scheduling, Josephus probiem
etc.

Section2: Trees, Graphs, Hashing

» Trees:— Basic terminology, representation using array and linked
list, Tree Traversals: Recursive And Non recursive, Operations on
binary tree: Finding Height, Leaf nodes, counting no of Nodes
etc., Construction of binary tree from traversals, Binary Search
trees(BST). Insertion, deletion of a node from BST. Threaded
Binary tree (TBT) Creation and traversals on TET, AVL trea.

v Graph:-Terminology and representation, Traversals, Connected
components ahd Spanning trees: Prims and Kruskal's Algorithm,
Shortest Paths and Transitive Closures: Single Source Ali
destinations (Dijkstra’sAlgorithm),-all pair shortest path
algorithm, Topological Sort.

v Hasing - Hashing techniques: Hash table, Hash functions, and
Collision, Cuckoo Hashing.

Arrays

» An Array is a collection of variables of the

same type that are referred to through a
common name.

» Declaration
type var_namefsize]

e.g

int Al6]:
double df15];

Array Initialization

After declaration, array contains some garbage
value,

Static initialization
int month_days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; |

Run time initialization

int I;

int A{B];

forll = 0; 1< 6; i++)
Alij=6-1

Array - Accessing an element

@A A0l | AT | A2l | ABI | Al | A5

Ox100 ©Ox100 ©OxI00 ©Ox101 ©OxIi01 ©6x102
0 4 8 2 6 (i)

6 > = 3 z 1

6 elements of 4 bytes each,
total size = 6 x 4 bytes = 24 bytes

Read an element
inttmp = A[2]; |

Write to an element

Aj3l=5;

ey

Strings in C

» No “Strings” keyword
» A string Is an array of characters.
OR

char stringl] = "helloworld":
char "string = “hello warld”; |

AC String of Characters with Addresses

S 5 ¥ 9 3 89 8 53 =
5 & © 8 5 8 & & o ©
Ty LN Yy e
a A S o B S S A N~ (|
0] 1] [21 131 41 (51 [6) (71 [8] [9)

=
o

- 1234:000A

=
0, :
=

E 1234:000B

o'

ia

Significance of NULL character “\0’

char stringl] = "hello. world™;
printf{“3¢s", string);

- Compiler has to know where the string ends
- “\0" denotes the end of string

Some more characters (do $man ascii):

‘‘\n' = new line, "\t' = horizontal tab, ‘\v' =
vertical tab, ‘\r’ = carriage return
‘A’ = 0x41, ‘a’ = 0x61, “\0" = 0x00

ey ,.

Pointers in C

- A char pointer points to a single byte,

< An int pointer points to first of the four bytes.

- A pointer itself has an address where it Is stored
In the memory. Pointers are usually four bytes.

| int *p; & int® p;

v *1s called the dereference operator
+ *p gives the value pointed by p

; §|
it i=4; | ‘
& @amp DM
- & (ampersand) i1s calle reference operator

. &1 returns the address of variable |

ey

Pointer Arithmetic

» A 32-bit system has 32 bit address space.
» To store any address, 32 bits are required.

» Pointer arithmetic - p+1 gives the next
memory location assuming cells are of the
same type as the base type of p.

ey

Pointer Arithmetic: Example

int *p, x = 20;

p = &x;

printf("p = %p\n", p);
printf("p+1 = %p\n", (int*)p+1),
printf("p+1 = %p\n", (char®)p+1),
printf("p+1 = %p\n", (float*)p+1),
printf"p+1 = %p\n", (double®)p+1),
Sample output:

p = 0022FF70

p+1 = 0022FF74

p+1 = 0022FF71

p+1 = 0022FF74

p+1 = 0022FF78

ey

Pointers and arrays

» Pointers and arrays are tightly coupled.
char all = "Hello World";
char *p = &al0],

charal12]. 'p= &a[0];
oSN e s el Seed) Clerd) Clpsd) fTeed) Tpeg) Mes10) e

al0] alf] af2] a[3] al4] a(5] a[8] a[7] alE] a[9] a(f0] afti]
H = | I o WV o r | d '

ey

Bubble Sort

v Idea:
- Repeatedly pass through the array
- Swaps adjacent elements that are out of order

I
i 3 n

|
]

E| 4|6

[
Pl
(]

» Easier to implement, but slower than
Insertion sort

Example

LIPS

I=;E |

Il

Y
iy
| m -
i] [
- " " —=
. | : " ;
v v L L] [
— — = -] 1 — i}
Il i Il I} Il

17

=
|
i=1 |

Bubble Sort

77 BUBBLESORT(A)
fori <« 1to length[A]
do for j « length[A] downto i + 1
do if A[j]< A[j -1]
| then exchange A[j] < A[j-1]

|| G

als|af2]3]1]
==

ey

1=

2-Dimensional Arrays (Array of
arrays)
int d[3][2];

Access the point 1, 2 of the array.
d[1][2]

Initialize (without loops):
int di31(2] = {1, 2}, 14, 5}, 17, 8}

ey

More about 2-Dimensional arrays

A Multidimensional array is stored in a row major format.
A two dimensional case:
=» next memory element to d[0][3] is d[1][0]

- d[olo] dfoiml. 4I012) - dfoi3]
dilifol diiifil — ditli2] —dPiE]—
df21[0] di2](1] d[2]i2] d[2113]

What about memory addresses sequence of a three
dimensional array?
ext memory element to t[0][0][0] is t[0][0][1]

Sorting
Algorithms

Sorting

» Arrangement of data items in ascending or
descending order.

» For unstructured data or records, keys are
used to distinguish or sort items.

» EX. Insertion, selection, bubble, merge etc.

ey

Insertion Sort

v Idea: like sorting a hand of playing cards

- Start with an empty left hand and the cards facing
down on the table.

- Remove one card at a time from the table, and
insert 1t into the correct pasition in the left hand

« compare it with each of the cards already in the hand,
from right to left

- The cards held in the left hand are sorted

+ these cards were originally the top cards of the piie on
the table

| ke
b

Insertion Sort

To insert 12, we need to
make room for it by

o= moving first 36 and then
240>, W1

Insertion Sort

Insertion Sort

Insertion Sort

input array

5 2 -4 6 I 3

at each iteration, the-array 1s divided in two sub-arrays

left sub-array right sub-array

2 5|4 6 1
b

soriad unsorted

fad

EA 8

Insertion Sort

3 @_[4 JAENE

INSERTION-SORT

65 INSERTION-SORT (4)
a; | as

l_ key

for j— 2 ton
do key — A[j]

< =

ﬂ.‘
=
-

el

LI

a: | a5 | a;

Insert A[j] into the sorted sequence A[1.. j-1]

ii—j—l

while i > 0 and A[i] > key

do Afi + 1] — A[i]

|l «—i-1

Ali + 1] — key

» Insertion sort - sorts the elements in place

ey

Analysis ﬁ':f G-

INSERTION-SOR"
forj— 2ton

do key — Al _:::

I;.Insert A[jﬂ 5 U
IHJ-I

while 1 > 0 ai

do Ali + 1] = Al

=T

All + 1] = kEV

cuted at iteration j

—m

Selection Sort

» Idea:
> Find the smallest element in the array
- Exchange it with the element in the first position
- Find the second smallest element and exchange it
with the element in the second position
- Continue until the array i1s sorted
» Disadvantage:

= Running time depends only slightly on the amount
of order in the file

Example

&_35923@
] 4?9@33
128 El_iaﬁ
] 2,39@55

2 4 f"aﬂ
2 i 9@
2 1ls| 8o
2 AlEEE

Selection Sort

Afy.: SELECTION-SORT (A)

= -

40
o

o

n < length[A]

forj«—1ton-1
do smallest — |
fori<— j+1ton
do if A[i] < A[smallest]
then smallest « |
exchange A[j] <= A[smallest]

ey

Analysis of Selection Sort
cost tTimes
Aly.: SELECTION-SORT (A)

n«— length[A] E :
forj«—1ton-1 2 0
do smallest — s Wl
~n2/2 fori—j+1ton C4 = T@m-sen
cnmpn\r"ffns Cs DI L)}]
2N Z oy R=J)

axchunggs E){Chﬂﬂgf AL]H ALSmﬂ”ES'l'é:{ n-_.l_

it — j=ll=c. 3> in—jl=c. ¥ in—jlac.(n =B ==58{x)

Sorting

v Insertion sort
- Design approach
Sorts in place
Best case:
Worst case:

» Bubble Sort
- Design approach
- Sarts in place
- Running time:

iIncremental
Yes

©(n)

&(n?)

incremental

Yes
a(n%)

Sorting

v Selection sort
- Design approach

Sorts in place

Running time.

» Merge Sort
- Design approach
- Sarts in place
- Running time.

nmcremental
Yes

o(n2)

divide and conquer
NG

i

Bucket Sort

» Bucket sort works by partitioning the
elements into buckets and the return the

result
» Buckets are assigned based on each
element’s search key

v To return the result, concatenate each bucket
and return as a single array

ey

Bucket Sort

» Some variations

- Make enough buckets so that each will only haold
one element, use a count for duplicates

- Use fewer buckets and then sort the contents of
each bucket

» The more buckets you use, the faster the
algorithm will run but i1t uses maore memory

Bucket Sort

» Time complexity i1s reduced when the number
of items per bucket is evenly distributed and
as close to 1 per bucket as possible

» Buckets require extra space, so we are
trading increased space consumption for a
lower time complexity

» In fact Bucket Sort beats all other sorting

routines in time complexity but can require a
lot of space

ey

Bucket Sort

» One value per bucket:

l.s' 1 "'I 1"5-"9_ 2I:"i' _5"4Idnm
:njz Ljvf2(2(t]{ofo] 1 couns
0 1L 2 3 4 5 6 7 & Y

| T o
H‘T* ' i"\ 4w w |I*
1l]2]3fafals]s]6]9]dma

Bucket Sort

Multiple items per bucket:

29 25 3 49 9 37 21 43

49

10-19 Iﬂ 29 Jﬂ 39 411-—49

ey

Bucket Sort

In array form:

A)
| |78 0|/
2 117, | =t—=i12] =—={17].7
) T I 671 S e P [
4 Jﬁ b __—_—"[39 f
5 72 4|7
6 |94 s |/~
7 |21 o | =+—»{68]/]
8 12 1 | il 3Bl
v 123 5 |2
10 | 6% 9 | =94

Divide-and-Conquer

» Divide the problem into a number of sub-problems

- Similar sub-problems of smaller size

» Conquer the sub-preblems

- Solve the sub-problems recursively

- Sub-problem size small Enﬂugh = solve the problems in

straightforward manner

» Combine the solutions of the sub-problems

- Obtain the solution for the original problem

Merge Sort Approach

» To sort an array Afp .. r]:
» Divide

- Divide the n—element sequence to be sorted into
two subsequences of n/2 elements each

» Conquer
- Sort the subsequences recursively using merge sort

- When the size of the sequences is | there iIs
nothing more to do

» Combine
- Merge the two sorted subsequences

Merge Sort

Afz.: MERGE-SORT(A, p, r)
ifp<r
then q — [(p + r)/2]
MERGE-SORT(A, p, q)
MERGE-SORT(A, g + 1,)
MERGE(A, p. gq.r)

3

Q
3
=

D& =

Z

4

=

3

n Check for base case

» Divide

Conquer

» Conguer

b Combine

v Initial call MERGE-SORT(A, 1, n)

ey

Example - n Power of 2

Divicde 5121201131216

Example - n Power of 2

1 3 3 - z E 7 2
Conquer 1[2[2[3[4[5]6[7
and ey
Merge 1 z T 4 5 B T B

Example - n Not a Power of 2

1 = 3 = : = if 11
g a[712]6 | 10713526 q=56
Divicle | ;//,\\‘
| | z 5 5 | 2 4 i I
q=>3 sl7[2 e] 7|38 2]6| qg=9
.f_,_,v"“__\\. ..-""j‘-\“"n
i i L s g 5 1
4 [2 & [N 4 7 3|5 [';2 E
= 7 21 [(4 P15 [2] |6
/N NN
i | ri B | Fy 3

45

Example - n Not a Power of 2

Conquer 1[2]2]3]4 5 | 6
and T
Merge e

1244n|;’ 213 5.8 IF
/',,,--""\‘_\‘ A

1 i & 5 F B = 5.
2l a7 14l 3517 2|6

I/\\ i/""_ _/""_\g/.r“\
&5 F & i

8
e,
— L
==
heel ol

4%

Merging

P E F
l*! : 5 & T Ed
[2]4]5[7[1]2]3]6]

» Input: Array A and inc

peqer

ices p, g, r such that

- Subarrays A[p..q]and A[g+1..r]are sorted

» Output: One single sorted subarray Afp . .

r}

ey

Merging

v Idea for merging:

Al _‘: R
- | 7]
i
i
i
il
-

- Two piles of sorted cards
* Choose the smaller of the two top cards
+ Remove it and place it in the cutput pile

- Repeat the process until one pile is empty

- Take the remaining mput pile and place it face-
down onto the output pile

&A1= &lp. dl Chexes flier i e
[— —— — .--l_ i gheiment - fie sy Alp, 1]

-ﬂl.E'E" IEE-E.E__II fi - | I [

Merge - Pseudocode

4l MERGE(A, p, q, 1)

|

Compute n; and n;

Eupy the first ny elements into

3. Lin; 1]« e;
4.
-7
6.
7.

8.

L[1..n+1]and the next n, elements into R[1.

+1]
R[n, +1] — =
=1 Jj<1
fork—ptor
doifL[i]<R[j]
then A[k] —L[i]

i—i+1

else A[k]—R[j]
i1

S |

LA (]

'%
214 /
]2 6

void merge(int a[], int low, int
high, int mid)

[itk clmax] void mergssort(int afl, int low, int high)
i=low, ' i ™
i=mid=1: int mid;
k=0 if{.IHW-%fhii;Th]
whileli==mid) && (j<=high) ' _ e
[mid={low=high)/2;
iftali] <ali]) mergesort(a,low,mid),
clkl=ali+=1I; mergesort(a,mid-=1,high),
else merge(a.low,high,mid);
clid=alj=+1; I
k5, i
i
whileli<=mid)
clk==+]=ali+=+],
while(j==high)
cik—l=alj—=]
forli=low,j=01<=high;1+-+j=+)
[

alil=cljl.

Quicksort Algorithm

Given an array of n elements (e.g., integers):
» If array only contains one element, return

» Else
- pick one element to use as p/vot.

- Partition elements into two sub-arrays.
- Elements less than or equal to pivot
- Elements greater than pivot

- Quicksort two sub-arrays

- Return results

Example

We are given array of n integers to sort:

Pick Pivot Element

There are a number of ways to pick the pivot
element. In this example, we will use the first
element in the array:

Partitioning Array

Given a pivot, partition the elements of the
aifrav such that the resulting array consists
of
. One sub~-array that contains elements >= pivot

2. Another sub-array that contains elements <
pivot

The sub-arrays are stored in the original data
array.

Partitioning loops through, swapping elements
below/above pivot.

100

pivot_index = |03 '

0] 0] {21 (3] [4] 5 6 7] (8

teo_big_index too_small_index

1. While dataftoo_big index] <= data[pivot]
++too big index

pivot_index = j 100

0] 0] {21 (3] [4] 5

6] 7] 18]

teo_big_index too_small_index

1. While dataftoo_big index] <= data[pivot]
++too big index

pivot_index = j

_ 100
01 [121 3] 4] 5]

6] 7] 18]

too_big_index too_small_index

1. While dataftoo_big index] <= data[pivot]
++too big index

pivot_index = j 100

0] 0] {21 3] [4] 5

6] 7] 18]

too_big_index too_small_index

1. While dataftoo_big index] <= data[pivot]
++too big index |

2. While data[too_small index] > data[pivot]
—-too_small index |

pivot_index = j 100

01 01 21 B3] 14 B

6] 7] 18]

too_big_index too_small_index

1. While dataftoo_big index] <= data[pivot]
++too big index |

2. While data[too_small index] > data[pivot]
—-too_small index |

pivot_index = j

01 01 21 B3] 14 B

6] [7] [8]

too_big_index too_small_index

1. While dataftoo_big index] <= data[pivot]
++too big index |
2. While data[too_small index] > data[pivot]
—-too_small index |
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]

pivot_index = j

00

6] [7] [8]

01 01 21 B3] 14 B

too_big_index too_small_index

ey

1. While dataftoo_big index] <= data[pivot]
++too big index |
2. While data[too_small index] > data[pivot]
—-too_small index |
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]

pivot_index = j

6] [7] [8]

01 01 21 B3] 14 B

too_big_index too_small_index

ey

1. While data[too_big index] <= data[pivoi]
++too big index
While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

o

01 01 21 B 14 B B 7 8

)

pivot_index = j

too_big_index too_small_index

— 1. While data[too_big index] <= data[pivoi]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

o

01 01 21 B 14 B B 7 8

pivot_index = j

too_big_index too_small_index

— 1. While data[too_big index] <= data[pivoi]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

pivot_index = j

01 01 21 B3] 1] B] 6] 7] I8

too_big_index too_small_index

1. While data[too_big index] <= data[pivoi]
++too big index
—= 2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

pivot_index = j

01 01 21 B3] 1] B] 6] 7] I8

too_big_index too_small_index

1. While data[too_big index] <= data[pivoi]
++too big index
—= 2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

= %

©1 0] 21 18] 4 B 6] 7] 18

pivot_index = j

too_big_index too_small_index

1. While data[too_big index] <= data[pivoi]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
—=*3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

£
(3]

©1 0] 21 18] 4 B 6] 7] 18

pivot_index = j

too_big_index too_small_index

1. While data[too_big index] <= data[pivoi]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
—=*3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

©1 01 21 18] 4 B 6] 7] I8

pivot_index = j

too_big_index too_small_index

1. While data[too_big index] <= data[pivoi]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
—=4. While too small index > too big index, gofo 1.

©1 01 21 18] 4 B 6] 7] I8

pivot_index = j

too_big_index too_small_index

— 1. While data[too_big index] <= data[pivoi]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

©1 01 21 18] 4 B 6] 7] I8

pivot_index = j

too_big_index too_small_index

— 1. While data[too_big index] <= data[pivoi]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

01 0[] 121 (3] 14] i3] fel [71 18]

too_big_index too_small_index

1. While data[too_big index] <= data[pivoi]
++too big index
—= 2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

01 0[] 121 (3] 14] i3] fel [71 18]

too_big_index too_small_index

1. While dataftoo_big index] <= data[pivot]
++too big index |
—= 2. While data[too_small index] > data[pivot]
—-too_small index |
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index > too big index. gofo l.

©1 01 21 18] 4 5] 6] 7] (8

pivot_index = j

too_ blgqindex too_small_index

1. While data[too_big index] <= data[pivoi]

++too big index

—= 2. While data[too_small index] > data[pivot]

--too_small index

3. Iftoo big index < too_small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

01 01 21 B3] 4 B

el [7]1 18]

too_big_index too_small_index

1. While data[too_big index] <= data[pivoi]
++too big index
While data[too_small index] > data[pivot]
--too_small index
—=*3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

01 01 21 B3] 14 B 6] 7 I8

)

too_big_index too_small_index

1. While data[too_big index] <= data[pivoi]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
—=4. While too small index > too big index, gofo 1.

01 01 21 B3] 14 B 6] 7 I8

too_big_index too_small_index

1. While dataftoo_big index] <= data[pivot]
++too big index
While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

—= 5. Swap data[too_small index] and data[pivor index]

01 01 21 B3] 14 B 6] 7 I8

)

too_big_index too_small_index

ey

1. While dataftoo_big index] <= data[pivot]
++too big index
2. While data[too_small index] > data[pivot]
--too_small index
3. Iftoo big index <too small index
swap data[too big index] and data[too small index]
4. While too small index >too big index. goto 1.

U= ac - E%,

—= 5. Swap data[too_small index] and data[pivor index]

3] 4 5 6] 71 B

0] 0] 121

too_big_index too_small_index

ey

Partition Result

Boon

40

50 | 60 | 80

-

[0}y 11 21 381 B 15l

E 2

<= datalpivot]

6] |71 [8]

> datalpivot]

=

Recursion: Quicksort Sub-arrays

o o] e [o
01 [121 (3] (4 i[5 [6] [7] I8]

- »
<= data[pivot] > datalpivot]

Special Types of Trees

v Def Full binary tree = a @
binary tree in which each N
node is either a leaf or has ®\ @
degree exactly 2. 2] Cgf‘l@ 19

| @ ®0 @
Full binary tree

» Def: Complete binary tree = a JO
binary tree in which all
leaves are on the same level @ Q@
and all internal nodes have @ BE

I degree 2. Complete binary tree

The Heap Data Structure

» Def- A heap is a nearly complete binary tree
with the following two properties:

- Structural property: all levels are full, except
possibly the last one, which is filled from left to
right

- Order (heap) property: for any node x

Parent(x) 2 x

From the heap
v ”‘x.h IEETDDEH?, it follows
] 2 that:
@"'@@ & “The root Is the

maxiumum
Heap element of the heap!”
gy tree that 1s filled en order

Array Representation of Heaps

+ Aheap can be storedasan |, . | . . 1 & ¢ 10

array A ST o 324
Root of tree is A[l]

- Left child of A[i]1= A[2i]
- Right child of A[i]= A[2i +1]
- Parent of A[i]= A[Li/2]]
- Heapsize[A] = length[A]

v The elements in the
subarray A[(Ln/2+1) .. n]
are leaves

Heap Types

» Max-heaps (largest element at root), have the
max-heap property:
- for all nodes i, excluding the root:
A[PARENT(i)] 2 A[i]

» Min-heaps (smallest element at root), have
the min-heap property:
- for all nodes i, excluding the root
A[PARENT(i)] ¢« Ali]

i

Adding/Deleting Nodes

» New nodes are always inserted at the bottom
level (left to right)

» Nodes are removed from the bottom level
(right to left)

Operations on Heaps

» Maintain/Restore the max-heap property
- MAX-HEAPIFY

» Create a max-heap from an unordered array
- BUILD-MAX-HEAP

» Sort an array in place
= HEAPSORT

» Priority queues

Maintaining the Heap Property

v Suppose a node is smaller than a
child

Left and Right subtrees of i are max-
heaps
» To eliminate the violation:

Exchange with larger child
Move down the tree

Continue until node is not smaller than
children

51

Example

MAX-HEAPIFY(A, 2. 10)

Heap praperty restored

Maintaining the Heap Property

» Assumptions: A2 MAX-HEAPIFY(A, i, n)

Leftand Right 1, | — LEFT())
subtrees of | 2. r — RIGHTI)
1'[?]':1‘1:2:3”5 3. if l<nand A[l]> A[i]
smaller than its 4. then largest —|
children 5. else largest —i
6. if r<nand A[r]> A[largest]
/. then largest —r
8. if largest = |
9. then exchange A[i] — A[largest]

_ 1 0. MAX-HEAPIFY(A, largest,
- n

Heapsort

v Goal:

- Sort an array using heap representations

v ldea
Build a max-heap from the array
- Swap the root (the maximum element) with the last
element in the array
“‘Discard” this last node by decreasing the heap size
- Call MAX-HEAPIFY on the new root
- Repeat this process until only one node remains

Example: A=[7,4, 3, 1, 2]

MAX=HEAPIFY{A, 1, MAX-HEAPIFY{A, 1, MAX-HEAPIFYI(A, 1,

G}f%'f) (1 |

@

MAX-HEAPFIFYIA, 1. 1)
‘ -

Alg: HEAPSORT (A)

. BUILD-MAX-HEAP(A) o(n)

». fori—length[A] downto 2

. do exchange A[1] < A[i] , n-1 times
a MAX-HEAPIFY(A, 1,i- 1) G(Ign):

-

Running time: O(nlgn) --- Can
be shown o be O(nlgn)

ey

Binary Search

» Binary search. Given .- and sorted array
.11, find index -
such that s::; = -2, Or report that no such
Index exists.

» Algorithm maintains ;e < vaiee < armeg.

» Ex. Binary search for 33.

TS 1 e A 5 e e] 5
1

f
lo hi

ey

EW%W séuec%rc&ven -a2z= and sorted array

=11, find index -
such that =7 = «21.2, or report that no such
index exists.

v Invariant. Algorithm maintains ajzs; < waiu= <

» Ex. Binary search for 33.

TS 1 e A == e e o]
1

F f
lo mid hi

ey

Binary Search
» Binary search. Given -:.- and sorted array
-1, find index -

such that =:2; = +:s=, o1 report that no such
Index exists.

v Invariant. Algorithm maintains =2 € w2ie <
afhai].

» Ex. Binary search for 33.

1 1
lo hi

ey

Binary Search

» Binary search. Given -::= and sorted array
=11, find index -

such that =:; = ===, or report that no such
Index exists.
» Invariant. Algorithm maintains =z < w21ee <

TRE] e
difil) .

» Ex. Binary search for 33.

1 | 1
lo mid hi

ey

Binary Search

» Binary search. Given --:.- and sorted array
=11, find index -
such that =::: = w21, Or report that no such
index exists.

v Invariant. Algorithm maintains zjic) < vziwe <

- -
ENE R

» Ex. Binary search for 33.

| 1
lo hi

ey

Binary Search

» Binary search. Given «::- and sorted array
-1, find index -
such that =:; = w1u=, Or report that no such
index exists.

v Invariant. Algorithm maintains z::=; < vare= <

= T =
- L | om

» EX. Binary search for 33.

I 1
lo mid hi

ey

Binary Search

» Binary search. Given «::- and sorted array
..y, find index -
such that =:; = w1u=, Or report that no such
index exists.

v Invariant. Algorithm maintains z::=; < vare= <

= T =
- L | om

» EX. Binary search for 33.

R R R R

1

lo
hi

ey

Binary Search
» Binary search. Given -z:== and sorted array
=1, find index -

such that =:; = ===, or report that no such
Index exists.

» Invariant. Algorithm maintains =z < w21ee <
afhai].

» Ex. Binary search for 33.
S A S A

1

lo
hi

|

Binary Search

» Binary search. Given -s:z- and sorted array
=11, find index -
such that =::; = 2102, Or report that no such
incdex exists.

v Invariant. Algorithm maintains zj:c; € veiue <

» Ex. Binary search for 33.
..lh_ 33 TS R
I

lo
hi

|

low = 0;
high = length - 1;

while [lDW <= hagh) {

mid = (low + high) / 2;

if (a[mid] < tar Pt} {
1;:}‘ = mid + »

} eise 1f (afmidil > target) |{
high = mid - 1;

} else {
return mid; // target found

}

f

ey

Fibonacci Search

Similarities with Binary Search:

v Works for sorted arrays

» A Divide and Conquer Algorithm.

» Has Log n time complexity.

Differences with Binary Search:

» Fibonaccal Search divides given array in unequal parts

» Binary Search uses division operator to divide range.
Fibonacci Search doesn't use /, but uses + and —. The
division operator may be costly on some CPlUs.

» Fibonacci Search examines relatively closer elements
in subsequent steps. So when input array is big that
cannot fit in CPU cache or even in RAM, Fibonacci
Search can be useful.

» Fibonacci Numbers are recursively defined as
F(n) = F(h-1) + F(n-2), F(0) = 0, F(1) = 1.
First few Fibinacci Numbers are 0, 1, 1, 2, 3,
5, 8, 13, 21, 34, 55, 89, 144,

» Below observation is used for range
elimination, and hence for the O(log(n))
complexity.

v F(n - 2) ≈ (1/3)*F(n) and F(n - 1)
≈ (2/3)*F(n).

ey

Algorithm

» Let the searched element be x.

» The idea is to first find the smallest
Fibonacci number that is greater than or
equal to the length of given array. Let the
found Fibonacci number be fib (m'th
Fibonacci number). We use (m-2)'th
Fibonacci number as the index (If it is a
valid index). Let (m-2)'th Fibonacci
Number be i, we compare arr[i] with x, if x
IS same, we return i. Else if x is greater, we
recur for subarray after i, else we recur for
subarray before |.

o

Below is the complete algorithm
Lat arri0..n-1] be the inputarray and slement te be searched be x.

Find the smallest Fibonaccl Number (;H'E&IE!' than or equal to n. Let
this number be fibM [m’th Fibonacc) Number]. Lat the two Fibonacc
numbers preceding 1t be fibMm1 [(m=1)"th Fibonacct Number] and
fibMmZ [(m-=2)th Fibonacc Number].

WhlEE the array has elements to be inspected
Compare x with the last element of the range covered by fibMm2
If x matzhes, rewrn index

Else If ¥ is [ess than the element, move the three Fibenaccl variables two

Fibonaccl down, Indicating elimination of approximasely rear two-third of
the remaining arraw,r

Else X is greater than the element, move the three Fibohacci variables one
Fibonacci down. Reset offset to IIT[|E}:.' Together these indicate elimination
of approximarely front one-third of the remaining array.
Since there might be a single element remaining for comparison,
check if fibMm1 is 1. If Yes, compare x with that remaining element.
It match, return index.

» EX

A=1{10,22,35,40,45,50,80,82,85,90,100},
1 (2 (3 [4 (5 [6 [7 (|8 [9 [10 [IT |

10 22 35 40 45 5350 @80 82 B85 90 100

X=85

N=11T

Fib=0,1,1,2,3,5,8,13,21,34

v Fib(7)=13 >11

» (m=1)= 8, (m-2)=5

ey

» i=min(offset+m2,n)

» Offset-It marks the range that has been
eliminated, starting from the front. We will

b ma

fThMmi

fibM

office

b= mibin i fer4Hl]L

n|

arrif

Cansequanmce

1

]

4

Menve onie dowiv teset affset

1 5 B | N fix Mewe ane down, peset offset
t 5 K b 20 Mone twis doswn
1 N g 84 Retumn |

Analysis of Algorithms

ﬁﬁﬁa:” W "iﬂi

Algorithm

Comparing Al
+ Given 2 orr ore 2 |
same proble

153y, VAN

one?
+ Some crlte |
1) asy'to | Fﬂlﬂmﬂﬂt underatan{i mﬂdlﬁr?
Z)
) mput&t memﬂw does It use?
' e "'_"Z‘;:_;‘.__:f-.ji;-';,;;ll, g is primarily
” stﬁEﬂtEI'iﬂ

Com pa_ri:n__'_

v Time Cﬁm 8 |
The 2 oIl t ;-’:

15-.

run to com
» Space cnm

I
_p - e
,ﬁ :

_"
-1.-

nt rﬂlﬂl'ﬂﬂl’?‘ an algorithm needs to

r ﬁ:glly look at space
Xity. w ;_-_ are mostly interested in
in this course
. JT' _'__'- !H___,__

rr I|:'_|
F — ¥ -.l..E] Ili' =" ;
> Taster (has
- il W o it e

: : =108 - : i |
r Lo LTS l 'Il
. |

I.-"“"

P i

nahysis of Al

How to Calculate Running time

» Most algorithms transform input objects into
output objects

s[3[1]2]—>| Sortine |, 11712735
algorithm

fnpuf obfect output object

= The running time of an algorithm typically

grows with the input size
= |dea: analyze running time as a function of input size

How to Calculate Running Time

» Even on inputs of the same size, running time
can be very different

- Example: algorithm that finds the first prime number
in an array by scanning it left to right

» |dea: analyze running time in the

» best case
=« worst case
= avearage case

How to Calculate Running Time

» Best case running ey
time is usually useless e
» Average case time is N

very useful but often
difficult to determine

» We focus on the worst
case running time
- Easier to analyze 000 2000 3000 4000

> Crucial to applications rput s
such as games, finance
and robotics

Running Time

a=h 5 & 8

Analysis of Algorithms

» When we analyze algorithms, we should
employ mathematical techniques that
analyze algorithms independently of

dpec.fﬁc implementations, computers, or
a

ta

» To analyze algorithms:
= First, we start to count the number of
5|gﬂlfcar1t operations In a particular solution
[0 assess Its efficiency.
- Then, we will express the efficiency of
alg:::rithnw using growth functions.

ey

The Execution Time of Algorithms

» Each operation in an algorithm (or a program) has a
cost.

= Each operation takes a certain of time,

count = count + 1; =P take a certain amount of time, but it is
constant

A sequence of operations:

count = ceunt + 1; Cost ¢
sum = sum + count; Cost ¢,

2 Total Cost = ¢; + G,

The Execution Time of Algorithms (cont.)

Example: Simple [f-Statement

Cost Times
it (n < 0) cl |
absval = —n c’l |
else
absval = n; 3]

Total Cost <= ¢l + max(c2,c3)

ey

The Execution Time of Algorithms (cont.)
Example: Simple Loop

Cost Times
i = I3 Cl]
sam = 0; c2 |
while (i <= n) { C3 n—+1
=& 13 c4 n
sum = sum 4 i; (G n

Total Cost = ¢l +c2 + (n+1)*c3 + n*cd + n*cS
= The time required for this algonthm is proportional

| ton

The Execution Time of Algorithms (cont.)
Example Nested Loop

Cost Times
3= ol | []
sum = 0; cZ I
while (1 <= n) | a3 n+l

T=1: cd § 4
wnile (7 <=) { o5 Br (3+l)
siim = =zom + i cE n*n
3 = 3 + 1; 7 n*n

)
3. =:1 F13 B n

)
Total Cost = ¢l +c2 = (n+=1)"c3 + n"cd +
n*n+1)ycs+nncb+n*n“c/7+n-c8
=> The time required for this algornthm is proportional to n*®

General Rules for Estimation

Loops: The running time of a loop Is at most the
running time of the statements inside of that loop

times the number of iterations.

Nested Loops Running time of a nested
containing a statement in the inner most
running time of statement multiplied by t
of the sized of all loops.

0op
oop is the
1e product

Consecutive Statements: Just add the running times

of those consecutive statements.

If /Else. Never more than the running time of the test
plus the larger of running times of S1 and S2.

Algorithm Growth Rates

» We measure an algorithm’s time requirement as a function
of the problem size.
Probiem size depends on the application: e.g. number of elements
wﬂgé:st for a sorting algorithm, the number disks for towers of
+ So, for instance, we say that (if the problem size is n)
- Algorithm A requires 5*n® time units to sclve a problem of size n.
- Algornithm B requires 7*n time units to solve a problem of size n.
» The most important thing to learn is how guickly thg
alg%rlthm s time requirement grows as a function of the
problem size.
- Algorithm A requires time propertional to n=.
- Algorithm B requires time proportional to n.
» An il‘?ﬂ'rrthm’s proportional time requirement is known as
growth rate.

v We can g:umﬁare the efficiency of two algorithms by
comparing t

eir growth rates.

.'Il -|I " . | .

Time requirements as a function ¢

Algorithm Growt mgg tes (cont.)

Algorithm A requires n*/5 seconds

Algorithm B requires 5* n seconds

Seconds

Common Growth Rates

Constant

Logarithmic

Log-squared

Linear

Quadratic

Cubic

Exponential

CEME 213 Dotz Srrhiclres

Big-Oh and Growth Rate

» The big-0Oh notation gives an upper bound on the
growth rate of a function

v The statement “fin) is O(gin))” means that the
growth rate of fin) 1s no more than the growth

rate of g(n)
» We can use the big—Oh notation to rank functions
according to their growth rate
fin)is Olgin)) | gln)is O(fin))
g(n) grows more Yes No
fln) grows more No Yes

ame growth Yes Yes

Anziyas af Algasthme

