
- Shital Dongre

- Assistant Professor

- VIT, Pune.

What is a stack?
 linear data structure

 It is an ordered group of homogeneous items
of elements.

 Elements are added to and removed from the
top of the stack

 Stack principle: LAST IN FIRST OUT(LIFO)

 It means the last element inserted is the first
one to be removed

 Ex- stack of plates

Last In First Out

2
1

4
3
2
1

3
2
1

3
2
1 top

top
top

top
top

1

Applications of stack

 Balancing of symbols

 Infix to Postfix /Prefix conversion

 Redo-undo features at many places like in editors.

 Forward and backward feature in web browsers

 Used in many algorithms like Tower of
Hanoi, tree traversals, topological graph sorting
etc.

 Other applications can be Backtracking, N queen
problem etc.

Operations on stack
 isEmpty

 Push

 Pop

 isFull

 Below is the complete algorithm
Let arr[0..n-1] be the input array and element to be searched be x.

 Find the smallest Fibonacci Number greater than or equal to n. Let this
number be fibM [m’th Fibonacci Number]. Let the two Fibonacci numbers
preceding it be fibMm1 [(m-1)’th Fibonacci Number] and fibMm2 [(m-2)’th
Fibonacci Number].

 While the array has elements to be inspected:
 Compare x with the last element of the range covered by fibMm2
 If x matches, return index
 Else If x is less than the element, move the three Fibonacci variables two Fibonacci

down, indicating elimination of approximately rear two-third of the remaining array.
 Else x is greater than the element, move the three Fibonacci variables one Fibonacci

down. Reset offset to index. Together these indicate elimination of approximately
front one-third of the remaining array.

 Since there might be a single element remaining for comparison, check if
fibMm1 is 1. If Yes, compare x with that remaining element. If match, return
index.

 i=min(offset+m2,n)

 Offset-It marks the range that has been eliminated,
starting from the front. We will update it time to time.

isEmpty - Returns true(1) if stack is empty,
else false(0).

int isEmpty()
{
 if (top==-1)
 return 1;
 else
 return 0;
}

#define MAX_STACK_SIZE 100

int top= -1

int stack[MAX_STACK_SIZE]

isFull - Returns true(1) if stack is Full,
else false(0).

int isFull()

{

 if (top==(MAX_STACK_SIZE -1))
 return 1;

 else

 return 0;

}

 Push- Add item in stack

void push(int num)

{

 if(isFull())

 printf(“\n Stack is Full”);

 top = top + 1;

 stack[top] = num;

}

 Pop- Remove item from stack

int pop()

{

int num;

 if(isEmpty())

 printf(“\n Stack is empty”);

num=stack[top];

top--;

return num;

}

Stack using Linked list

 Extend stack size dynamically

 isFull() - condition not applicable

 isEmpty()- head node not available

void push(struct Node** head, int data)

{

 struct Node* node = (struct
Node*)malloc(sizeof (struct Node));

 node->data =data;

 node->next = *head;

 *head = node; //top

 }

Push(..,3)

void pop(struct Node** head)

{

 if (isEmpty(*head))

 printf(“ Stack is Empty”);

 struct Node* temp = *head;

 *head = (*head)->next;

 int num = temp->data;

 free(temp);

 printf(“ Popped element: %d”, num);

 }

 pop

